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Lifting multi-blade flows with interaction
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Planar flow past multiple successive blades and wakes is studied for nearly aligned
configurations with normal non-symmetry inducing lift. The typical blade lies rela-
tively near the centreline of the oncoming wake from the preceding blade. The central
motion over a wide parameter range is in condensed periodic boundary layers and
wakes with fixed displacement, buried within surrounding incident shear flow. This is
accompanied, however, by streamwise jumps in the pressure, velocity and mass flux,
across the leading edge of each blade, a new and surprising feature which is supported
by the combination of incident shears and a solid surface and which is related to the
normal flow through the multi-blade system. The leading-edge jumps are required
in order to satisfy the equi-pressure condition at the trailing edge. Computational
results include separating flows and show the lift and drag, and these are followed by
a short-blade analysis which captures the main flow properties explicitly. The results
agree qualitatively with experiments and direct simulations for rotor blade flows. The
jump feature also extends for example to a single blade immersed in the relatively
large wake of an upstream blade.

1. Introduction
Arrangements of multiple successive blades in near alignment with a fluid stream,

so that each blade lies in or close to the wake of the previous blade, are involved in
numerous practical applications. These include flows past helicopters, other rotorcraft,
propellers and turbine blades, and in engines, food mixers, blenders, bean grinders,
hover mowers, fans, industrial mixers, as well as for multiple airfoil flaps, slip-
streaming, airborne seed travel, flocks of migrating birds, pursuit and landing or
take-off delay issues. The characteristic Reynolds number is usually large in all these
cases, and the blades or equivalent airfoils tend to be thin.

The applications above have in turn led to numerous flow studies, many of which
however focus on properties for an isolated blade. Computations based on an in-
viscid approximation or on direct numerical simulation at relatively low Reynolds
numbers, and some experimental work, are discussed mostly for the helicopter setting
by Egolf & Sparks (1985), Davis & Chang (1986), Strawn & Caradonna (1986),
Lorber (1990), Seddon (1990), Brouwer (1992), Landgrebe (1994), Wake & Baeder
(1994) and references therein. An interesting review of these and other aspects is
given by Conlisk (1997) who in particular notes the significant effects of wakes
on individual blade flows in practice. Generally there continues to be a theoreti-
cal need to incorporate the multi-blade-wake nature of a real configuration, a need
which is addressed by the present study and related ones on multiple-blade-wake
interactions.

Theoretical works on multi-blade-wake interactions appear to be few, especially
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concerning boundary layers and allied features; see also Conlisk (1997). Smith & Tim-
oshin (1996a) investigated three-dimensional rotating configurations of thin blades
(such as for a cut disk) under the assumptions of normal symmetry and negligible mo-
tion far from the configuration, and pointed out a number of unusual viscous–inviscid
properties that arise despite the imposed uniform surface pressure distributions in
their cases. The properties include double viscous layers and short/long interactions
for various limits, for instance where each separate blade and its own viscous layer
is embedded in a much thicker incident motion outside. Subsequently the planar-
flow study of Smith & Timoshin (1996b) allowed for non-symmetry in the normal
direction, this introducing a distinct inner–outer flow interaction at tiny angles of
incidence for example, coupled with increased upstream influence. This is again with
fixed surface pressure to the first approximation but the unknown pressure distribu-
tion at the next approximation couples fully with the unknown leading-order wake
shape in controlling the dominant velocities in particular.

The above two papers further noted that a quasi-periodic local flow solution
emerges, sufficiently downstream of the leading blade in the two-dimensional setting
or for a sufficient number of blades on a three-dimensional rotor, for the limit of
many (or multi) blades. In practice ‘many’ is found to mean ‘more than about 4’,
thus indicating this case as being one of some practical value, and this is the case of
most interest here. See also Hawkings & Lowson (1974), Parry & Crighton (1989),
and Seddon (1990) concerning rotor acoustics and the actuator disk model used in
industrial prediction. The same limit case of multi-blade motions was considered by
Bowles & Smith (2000) in the presence of interaction between the unknown blade
or wake pressure and the unknown displacement of, or efflux into, the outer inviscid
motion, but with normal symmetry and hence zero lift. This pressure–displacement
interaction was incorporated to allow for the regular flow separations shown in
their results, unlike in the previous Smith & Timoshin (1996a, b) studies; and the
interaction itself, combined with spatial periodicity, led to several distinct features
including interactions covering an entire blade and a full coupling between short-
blade effects and long-wake effects. The so-called condensed case was also covered,
corresponding to fixed displacement with unknown pressure and covering a very wide
range of length scales. The last paper in addition led to the study in Smith, Bowles
& Li (2000) of transition in near wakes, partly of the kind encountered by Bowles &
Smith.

The present concern is with the effects of non-symmetry in the normal direction on
the viscous–inviscid interactive planar flow (with unknown pressure) past successive
blades and wakes, and the implications for the lift and drag on the blade system. Again
the multi-blade case is of most interest, with the comparatively thin boundary-layer
and wake motion due to each separate blade being embedded well within an outer
shear flow produced by the complete blade system. Indeed each blade is positioned
relatively near the centreline of the preceding wake.

The distinction from the only previous study involving unknown-pressure inter-
action with multiple blades (Bowles & Smith 2000) is partly obvious and partly
not: obviously there is now the need to solve the flow equations both above and
below the typical blade, generating unequal surface pressures and lift; not obvi-
ous, or less obvious, is the finding of jumps in the pressures, velocities and so on
across the blade leading edge in the streamwise direction. That is, on the stream-
wise scale of the blade the flow solution is discontinuous at the leading edge. The
reason for this pivotal assumption is clear from considering a single non-symmetric
blade positioned within an oncoming smoothly profiled wake motion. This wake
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and the ensuing two boundary layers grown on the blade surfaces are thin lay-
ers, suggesting parabolic solution dependence locally and no upstream influence.
A dilemma then arises at the trailing edge and in the subsequent wake, however,
where normal continuity of pressure is required as in the Kutta condition and
yet the two surface boundary layers in general would yield different trailing-edge
pressures, due to parabolicity. The dilemma is resolved by the discontinuity in the
(long-scale) solution at the leading edge, in the neighbourhood of which virtually all
the necessary upstream influence is concentrated. A self-consistent discontinuous flow
cannot be set up with the discontinuity fixed at any station other than the leading
edge.

Further motivation and background for the above is provided by the experimental
and computational findings presented in figure 8 of Conlisk (1997) for a lifting
rotor in hover, which give indications of a notably abrupt pressure rise or fall
near the leading edge on both surfaces of the blade, apparently more so than for
usual isolated blades. Leading-edge pressure jumps in other configurations are also
noted in the next paragraph. The discontinuity involved here is smoothed out within
a shorter streamwise length scale surrounding the leading edge where substantial
normal pressure gradients are generated, via an inviscid Euler flow region within
which largely separation-free motion is assumed. The pressure jumps encountered
in the current flows are supported by, on the one hand, the presence of forward
streamwise uniform-shear flow, at relatively large normal distances above and below
the leading edge, and on the other the solid surface itself. The unbounded shear flows
in particular allow a pressure jump to be maintained through coupling with the jump
in the mass flux (from the balancing of the inertial force proportional to streamwise
shear against the streamwise pressure gradient), in contrast to unbounded uniform
streams for example.

Alternative mechanisms for leading-edge jumps are described by Jones & Smith
(2000) and Smith & Jones (2000) in the contexts of body–ground interactions and
branching flows respectively. These likewise generate large streamwise and normal
pressure gradients locally but with physical support provided by two or more contain-
ing walls instead. In the present configuration the pressure jumps found are similar
to those experienced at a discontinuity of vorticity in vortex sheet dynamics, with
continuous velocity, as described in Smith et al. (2000) recently.

The motion of concern here is taken to be two-dimensional, laminar and steady,
for an incompressible fluid. Section 2 describes the flow scales, derived from an
order-of-magnitude argument which emphasizes the range of the condensed-flow
theory to be used, followed by the governing equations and boundary conditions.
The latter include the main new feature of the pressure jump and its accompanying
jump in mass flux, streamwise across the leading edge, the mechanism for which is
discussed in § 3. This is for the spatially periodic case associated with multiple blades,
although it also extends to general configurations where a blade is aligned or nearly
aligned with an oncoming wake containing comparatively low minimum velocities, as
with rotor–stator row interactions in turbomachinery for instance. Section 4 presents
computational results for the present multi-blade flows with various degrees of non-
symmetry, followed by an analysis for small ratios of blade length to wake length
in § 5 which is motivated by the short-blade approach developed in Bowles & Smith
(2000) and obtains explicit results for the surface pressures, the wake shape and the
lift generated, for comparison. The theoretical results are remarkably similar to the
experimental and numerical ones in Conlisk (1997, figure 8) mentioned previously.
Section 6 provides further comments.
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Figure 1. Diagram of the multi-blade and wake flow, with normal non-symmetry, indicating the
slender viscous–inviscid layers and accompanying non-slender Euler regions near the leading edges
as well as on a broader scale.

2. The flow structure and main governing equations
2.1. Scales and range of the theory

We start with an order-of-magnitude reasoning. The thin non-symmetric blade and its
wake, representative of the multiple blade configuration, are taken to be of comparable
characteristic length `D, aligned or nearly aligned with the uniform free stream of
speed uD and buried within the surrounding incident total boundary layer or wake of
thickness `Dδ in the normal direction. The subscript D denotes a dimensional quality.
The ratio δ may be small, large or of order unity but it is assumed to be much greater
than the classical thickness ratio of order Re−1/2 associated with a single isolated thin
blade in a uniform stream, where Re = uD`D/νD is the Reynolds number and νD is
the kinematic viscosity. This assumption corresponds to there being a large number
of blades present, either in the pure two-dimensional setting with the leading blade
lying far upstream or in the rotating-flow arrangement (Smith & Timoshin; Bowles
& Smith), this leading to the build-up of thickness of the surrounding viscous motion
as it passes over the many other blades which altogether cover a streamwise extent
much larger than `D .

Likewise the blade thickness is taken to be much less than the surrounding inci-
dent flow thickness `Dδ. In consequence the surrounding streamwise velocity profile
near the blade is linear, giving velocities of order uDδ1/δ in the typical viscous
sublayer of thickness `Dδ1 on the blade and in its wake, and hence the inertial
force there is of order ρDu

2
Dδ

2
1/(δ

2`D) whereas the viscous force has characteristic
size µD(uDδ1/δ)/(`Dδ1)

2, with ρD, µD being the constant fluid density and viscosity
respectively. A balance of these two forces determines the viscous thickness ratio δ1

as (Re−1δ)1/3. The corresponding velocity, of order uDδ1/δ, then points to a viscous

pressure response pDV of order ρDu
2
Dδ

2
1/δ

2, i.e. pDV ∼ ρDu2
D Re

−2/3δ−4/3, on the blade.
This estimate presupposes the local sublayer flow response to be nonlinear and vis-
cous to accommodate the mixed blade-wake conditions and the blade thickness to be
of size O(`Dδ1) at most.
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Outside the viscous sublayer, on the other hand, the normal displacement effect
of representative size `Dδ1 needs consideration, over a normal distance of extent
`D , where it induces an inviscid pressure response pDI say. If the ratio δ is small
then potential-flow properties in the free stream establish that pDI ∼ ρDu

2
Dδ1, due

to the displacement slope, and the same estimate holds when δ is of order unity,
while if δ is large pDI ∼ ρDu

2
Dδ1/δ

2 because of the surrounding shear. So for the
former estimate the inviscid pressure would be much larger than the viscous pressure
if δ1 � Re−2/3δ−4/3, i.e. if δ � Re−1/5. In such a case the argument is that the
displacement slope must remain negligible in order to maintain the two pressures at
the same level, given that pDV is independent of normal distance provided the viscous
sublayer is slender, its slope being δ1 which is small provided δ � Re. Moreover the
comparison of the pressures above when δ is instead large also requires δ1 to be
small. See figure 1 which provides a sketch of the flow configuration, the main scales
and the setting.

Accordingly the theory applies for the entire wide range Re� δ � Re−1/5 of sur-
rounding thicknesses δ, and it demands that the slope of the local viscous displacement
remains negligible. The requirements

Re� δ and Re� δ−5 (2.1)

alternatively express the range of validity in terms of Reynolds numbers, for a given
ratio δ of the surrounding flow thickness to the representative blade-wake length.
(Interpreting this practically, if δ is about 1

5
for instance then Re must be greater than

about 1.25 × 104, whereas if δ is about 5 then Re must exceed only about 20; here
‘�’ is interpreted as ‘is at least four times larger than’.)

2.2. Governing equations for the multiple periodic boundary layers and wakes

In consequence of § 2.1 the governing equations of the thin viscous boundary layer
and wake of the typical blade are

∂u

∂x
+
∂v

∂y
= 0, (2.2a)

u
∂u

∂x
+ v

∂u

∂y
= −p′(x) +

∂2u

∂y2
. (2.2b)

These are subject to the conditions of no slip on the upper and lower blade surfaces,
regularity in the wake(s), zero displacement slope, and streamwise periodicity, in the
form

u = v = 0 at y = f±(x), 0 < x < `, (2.3a)

u, v, p regular in wakes, (2.3b)

u ∼ ±λ±y + c± as y → ±∞, (2.3c)

L-periodicity in x, (2.3d)

respectively. Here the superscripts ± refer to the areas above and below the blade
(or the wake centreline), in turn. Further, the velocity is uDδ1δ

−1(u, vδ1) in Cartesian
coordinates `D(x, δ1y) (streamwise, normal in turn), the pressure is ρDu

2
Dδ

2
1δ
−2p, and

the blade and wake lengths are respectively `D`, `D(L − `) with `, L of order one,
where δ1 ≡ (Re−1δ)1/3 from above. The origin is placed at the blade leading edge for
convenience. The non-symmetric blade surfaces are specified by f± in (2.3a), where
f+ > f− (and f±(0) = 0), the blade thickness scaling here on `Dδ1. In (2.3c) the
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order-one positive constants λ± represent the given incident shears, and the unknown
order-one constants c± reflect the effective absence of displacement slope required
in the theory for the range (2.1); their being non-zero and unequal in general is
explained by the surrounding longer-scale evolution as in Bowles & Smith, involving
for each of the lower and upper half-planes an outer thicker viscous layer wherein
the displacement effects are smoothly reduced to zero at sufficiently large normal
distances. The constraint (2.3d) of local spatial periodicity is necessary to preserve the
overall flow structure with its underlying dependence on two streamwise length scales,
the local one `D and the larger more global one associated with the surrounding
motion as described earlier.

2.3. The discontinuity

A further important (and unusual) feature is also relevant, however, as a streamwise
pressure jump must be allowed at the leading edge. This is due to the local parabolic-
ity of the boundary layers and wakes in (2.2) and (2.3 a–c), indicating zero upstream
influence in general and therefore a possible contradiction with the equi-pressure
requirement within (2.3b) at the trailing edge: the boundary layers on the upper and
lower surfaces are different from each other and so they usually produce unequal
trailing-edge pressures if they begin with identical leading-edge pressure. The reso-
lution is provided by a flow solution discontinuity, which can occur self-consistently
only in the neighbourhood of the leading edge (see next section), where all the up-
stream influence is focused, in a sense. So in general the scaled pressure p(0−) just
ahead of the leading edge is different from the two distinct values p±(0+) on the
upper and lower surfaces just downstream. Instead the Bernoulli quantity p+ 1

2
u2 and

the vorticity are conserved across the leading edge, yielding the condition(s)(
p+ 1

2
u2
)

(at x = 0−) = π+ + 1
2
(u+)2 = π− + 1

2
(u−)2, (2.3e)

∂u

∂y
is conserved along streamlines. (2.3f)

Here π+ denotes the unknown value of p+ at x = 0+, u+ is the unknown incident
slip velocity felt at the leading edge (x = 0+ again) by the blade flow on the upper
surface, provoking a Blasius-like sublayer there, and similarly for π−, u−.

The quantity u of the upstream wake at x = 0− in (2.3e) is to be evaluated at a
y-position, to be found, such that for continuity the value of ψ at that y-position
is equal to the ψ value on the current blade in x > 0; the stream function ψ
here satisfies u = ∂ψ/∂y, v = −∂ψ/∂x as usual. All the incoming upstream-wake
streamlines are therefore displaced, on passing through the jump, so as to satisfy the
vorticity conservation requirement (2.3f) on the (outgoing) streamlines above and
below the blade. The jump features of (2.3e, f) are discussed in more detail in the
next section.

3. The leading-edge jumps
3.1. Local Euler region

The streamwise length scale involved in the comparatively short region necessary
to smooth out the leading-edge jumps of (2.3e, f) is of order `Dδ1, the same as the
normal sublayer scale, and the sizes of the velocity (both components) and pressure
are clearly uDδ1/δ, ρD(uDδ1/δ)2 respectively. So the leading-edge region is controlled
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by the Euler equations in (u, p)(x̄, y), for |y| < ∞ and |x̄| < ∞ where x = `Dδ1x̄, with
the thin blade appearing as a flat plate at a constant y value for all positive x̄ say.

Hence the vorticity and Bernoulli quantities are conserved along the flow stream-
lines, yielding

∇2ψ = g1(ψ), p+ 1
2
|u|2 = g2(ψ), (3.1a, b)

where ∇2 denotes ∂2
x̄ + ∂2

y and the functions g1 (negative vorticity), g2 (pressure head)
are fixed as usual by the wake velocity profile and pressure level entering upstream
and are related by g1 = dg2/dψ. The flow is supposed to enter and leave the present
region uni-directionally but with an overall displacement of its streamlines and
vorticity distribution accompanied by pressure changes, consistent with the upstream-
to-downstream jumps in (2.3e, f), and with smooth attached flow in between such
that ψ is an unknown constant on the quasi-semi-infinite blade. A thin viscous
boundary layer is generated of course on the local leading-edge surface here and
this is supposed to remain broadly attached, for some surface shapes at least, before
forming downstream the beginnings of the Blasius-like effects on the longer scale
described just after (2.3f). Large-scale leading-edge separations are thus discounted.

The upstream and downstream asymptotes for (3.1) at large |x̄|, where the scaled
normal velocity −∂ψ/∂x̄ tends to zero and ∇2ψ tends to ∂u/∂y(= g1), yield the
conditions (2.3e, f) exactly, then, although the solution of (3.1) for all x̄, y is a
numerical task generally for an arbitrary distribution g1(ψ).

The far-field solution of (3.1) can be found however, since g1 then tends to ±λ±
and so

ψ ∼ ± 1
2
λ±y2 + c±y + [a3 + b3θ], (3.2a)

p ∼ ±λ± [a3 + b3θ − 1
2
b3 sin 2θ

]
+ c±3 . (3.2b)

Here θ is the polar angle tan−1(y/x̄) and, for positive y, a3 = q2, b3 = (q1 − q2)/π,
while, for negative y, a3 = 2q1 − q2, b3 = (q2 − q1)/π, with q1, q2 denoting respectively
the constant values of ψ far upstream at fixed y and on the blade. This is consistent
with (2.3c). The pressure results (3.2b) follow from g2 ∼ ±λ±ψ along with (3.1b), and
the constants c±3 are to ensure pressure continuity upstream. The pressures involved
in the jumps of § 2 (from x̄ = −∞ to +∞) are therefore related by

π± − p(0−) = ±λ±(q2 − q1), (3.3)

from the values of b±3 above, consistent with (2.3c, e, f). The far-field behaviour above
is smooth for θ between zero, π and between π, 2π, and this is completed by layers
with width y of order unity upstream and downstream at large positive and negative
x̄. These two layers merge in turn with the downstream boundary layer and the
upstream wake of § 2.

3.2. An exact local solution

Further analytical guidance is provided by the following case, allowing for non-
symmetry. Suppose the upstream wake profile has u given by u0 + λ+y for all positive
y and u0−λ−y for all negative y where u0 is a positive constant, so that u is continuous
and positive, with pressure level p = p0 say, and ψ again tends to q1 at y = 0 upstream
as x̄ → −∞ but ψ is equal to q2 on the blade which occupies y = 0 for all positive
x̄. Here we are taking c± to be zero. The motion has to be non-symmetric in y if
q1 6= q2. The vorticity then gives ∇2ψ equal to ±λ± above and below the streamline
ψ = q1 respectively, while at that streamline for all negative x̄ continuity of ψ, p is
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Figure 2. Solution of (3.4) for G vs. negative x̄, with γ = q̄ = 1. The behaviours at small |x̄| and

large |x̄| are 1− O(|x̄|1/2) and O(|x̄|−1
) respectively.

required. Hence ψ̄ ≡ (ψ ∓ 1
2
λ±y2 − u0y − q1) must satisfy Laplace’s equation and is

expected to be bounded in the far field. If in addition q2 − q1 is small then the other
boundary conditions are that ψ̄ = q̄(≡ q2 − q1) on y = 0± in x̄ > 0 and, on y = 0±
in x̄ < 0, ψ̄ and (±λ±ψ̄ − u0∂ψ̄/∂y) are continuous. These two continuity conditions
can be replaced by γψ̄ = ∂ψ̄/∂y at y = 0, x̄ < 0 as far as solving for ψ̄ in the upper
half-plane is concerned, with symmetry ψ̄(x̄,−y) = ψ̄(x̄, y) for all positive y but noting
that ∂ψ̄/∂y is not identically zero at y = 0±. Also the constant γ ≡ (λ+ + λ−)/(2u0)
is positive, and the far-field behaviour has ψ̄ ∼ q̄(π− θ)/π, in keeping with the jump
in ψ from upstream to downstream. Hence ψ̃ ≡ ψ̄ + q̄(θ − π)/π must also satisfy
Laplace’s equation in the upper half-plane but ψ̃ is to be zero at y = 0 for positive
x̄ and to satisfy γψ̃ = ∂ψ̃/∂y − q̄/(πx̄) at y = 0 for negative x̄. So the function G(x̄)
defined by ψ̃ evaluated at y = 0 is identically zero for x̄ > 0 but unknown for x̄ < 0
and, as it yields ∂ψ̃/∂y at y = 0 in terms of a Cauchy–Hilbert integral of G′(x̄), the
function is governed by the integro-differential equation

γG(x̄) +
1

π
PV

∫ 0

−∞
G′(ξ)dξ

x̄− ξ = 0, (3.4a)

for all x̄ < 0, subject to

G(0−) = q̄, G(−∞) = 0. (3.4b, c)

The constraint (3.4b) is to keep the original stream function continuous at the leading
edge in the present scales and (3.4c) stems from the far-field response. The implied
jump in G(x̄) across x̄ = 0± means that the term −q̄/(πx̄) is absorbed into the
principal-value (PV) integral of (3.4a).

The solution of (3.4) was determined computationally by a finite difference pro-
cedure and is shown in figure 2, normalized such that γ, q̄ are unity. This numerical
solution agrees closely with the analytical one of Stewartson (1960) (kindly pointed
out to us by Professor Susan Brown), to well within the three significant figures that
he quotes. We observe that the decay G ∼ −q̄/(πγx̄) at large negative x̄ is slow.
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The exact solution of (3.4) relies on γ being positive and finite, as well as on q̄.
Thus the incident shears λ± are again seen to be central to the flow structure, as is
the non-zero minimum wake velocity u0 in this special case. We see moreover that
ψ, p jump from (± 1

2
λ±y2 + u0y + q1), p0 respectively upstream at large negative x̄ to

(± 1
2
λ±y2 + u0y + q2), p0 ± λ±(q2 − q1) respectively downstream at large positive x̄, at

a fixed positive or negative y value. These overall jumps are in line with (2.3e, f) and
(3.3), and likewise the smooth local flow solution near the leading edge associated
with (3.4a) is exactly in line with (3.1) and (3.2).

3.3. Larger Euler region

There is also a larger outer Euler-like zone but of linearized flow, of course, anticipated
near the start of § 2. Its response to the ψ, p variations of (2.2) and (2.3) is worth
considering and interpreting, especially given the jumps of (2.3e, f) and (3.3). The
outer zone has streamwise and normal dimensions both of order `D and so its
perturbation stream function or velocity is controlled by Laplace’s equation if the
ratio δ is smaller or larger than O(1) and by Rayleigh’s equation with zero wave
speed if δ is of O(1). The boundary conditions require L-periodicity in x, boundedness
at relatively large normal distances and matching with ψ, p(x) of (2.2) and (2.3) at
small normal distances, supplemented by the match with (3.2) at O(1) values of θ
near the origin. The flow solution can be written down explicitly when δ is small
or large and it confirms that the required source- or sink-like jump in ψ across
x = 0±, linked with the pressure jump of (3.3) by a factor ±λ±, is met by an overall
perturbation mass flux vertically through the multi-blade system, above the centreline,
and a similar flux below. These two fluxes are different in general because of the
intervening streamwise convection (of (2.2)) in the viscous flow near the blades and
their wakes. A corresponding interpretation holds also when the ratio δ is of order
unity.

4. Computational solutions
4.1. Numerical method

The flow field for (2.2) and (2.3) divides computationally into the three areas f+ 6
y 6 y1 above the blade for 0 < x < `, f− > y > y2 below the blade for 0 <
x < `, and y3 6 y 6 y4 in the wake for ` < x < L. Here y1, y4 (y2, y3) are
suitably large and positive (negative). The flow in each area was resolved numerically
with a finite-difference procedure as in Bowles & Smith (2000), using a Prandtl
shift with y − f± replacing y for convenience in the first two areas; the junctions
between the areas are considered in the next two paragraphs. In the procedure
three-point centred differencing is applied throughout in y with step length ∆y and
two-point in x for (2.2). This yields, with (2.3a, c) or (2.3b, c) and with set c± values,
a pentadiagonal system from which the velocities and pressure (p+, p− or p) at a
discrete station x are found semi-implicitly for all the given discrete y values, from
the solution at the previous station x − ∆x, where ∆x is the streamwise step length.
Forward flow with u positive is assumed for now. Second-order accuracy in x as
well as y is then obtained by the double-stepping scheme of Smith & Timoshin
(1996a, b). The solution behaviours immediately after the leading and trailing edges
are also accommodated by their approach and that of Bowles & Smith, as, with
minimal linkage to other x positions through the streamwise derivatives, the viscous
terms at the current x position act to suppress the grid-like oscillations that can
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occur in other rectangular-grid approaches proceeding from a leading or trailing
edge. The local flow solutions merge very closely over a streamwise step or two
to the known forms of Blasius and Goldstein essentially, in surface shear, pressure
and so on.

The solution is marched forward through the two areas above and below the blade,
then on through the wake area and on around the next blade (see below), and so
on repetitively until spatial L-periodicity of the velocities and the pressure gradient
is ensured to within a given tolerance, which is typically 10−3 and is attained within
about 7–10 blade sweeps. The pressure itself is also required to be L-periodic however,
subject to the jump conditions across the leading edge that are about to be described,
and this requirement sets one constraint on the two unknown constants c±. The
requirement is met by an application of Carter’s method similar to that in Bowles &
Smith, leading to a total of approximately 25 iterative sweeps.

During each sweep the jump in pressure p and its accompanying profile changes
in ψ, u at the blade leading edge are handled as follows. The vorticity requirement
(2.3f) amounts to there being first a uniform shift ys in all the y values with the
wake u profile otherwise unchanged, as the leading edge is passed over, and second
an adjustment in the u profile which must be made above the blade and similarly
an adjustment, usually different, below the blade, in order to cater for the two outer
constraints in (2.3c). The constants c± are already set at this stage, we recall. These
alterations in the u profiles consistent with (2.3f) serve to fix the two pressures
p± = π± at x = 0+ in view of (2.3e).

When the shear is nearly uniform or the ys value is relatively large, or both, for
instance, the outer constraints (2.3c) imply that, as the jump y → y + ys holds across
the leading edge in the downstream direction, u→ u± λ±ys and so then (2.3e) yields
the explicit results

π± = p(0−)∓ λ±ysu0(−ys)− 1
2
(λ±)2y2

s (4.1)

for the upper and lower surface pressures immediately after the leading edge. This
approximation was used to guide the present numerical reasoning, as well as proving
helpful in the next section. In practice normal compression or expansion of the
velocity profile is incorporated in the numerical method by means of interpolation,
in order to satisfy (2.3f). Hence next, given ys, the flow solutions for the velocities
and pressures in the areas above and below the blade can be marched forward to the
trailing edge. There, at x = `, the pressures p±(`) for the start of the wake area must
be equal however because of (2.3b) and so an iteration is performed, adjusting the
scaled angle of attack α (which is built into the shapes f±) to produce equal p±(`)
values from the leading- to trailing-edge marches. The alternative of specifying α and
deducing the shift ys is rather more cumbersome. The wake march then proceeds
from x = `(+∆x) to x = L, beginning with the velocity profiles supplied from above
and below the blade and ending at the next leading edge, ready for the next ys shift
there.

The entire process above is sufficient to leave only one constant undetermined, say
c+, which is an input parameter related to the vertical through-flow of the overall
system: see § 3. The alternative of setting c± equal was also explored. The positive
shear constants λ± were taken as unity in all our computations, and the grids were
uniform. Reversed flows with u negative were treated by windward differencing in
the streamwise direction. Typical grids used had (∆x,∆y) equal to (0.005, 0.025),
(y1, y2, y3, y4) equal to (20,−20,−20, 20), and finer grids were adopted as checks.
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Figure 3. Computational flow solution for flat-plate blade case of f± ≡ −αx at scaled incidence
angle α = 0.258. (a) Blade pressures p± and wake pressure p vs. x (b) scaled skin frictions vs. x, on
the blade. Here, and in figures 4–10, ` is normalised to be one and the ratio r(= `/L) is 1/6.

4.2. Results

The results are presented in figures 3–10 for a ratio r of the blade length to the
spatial period equal to 1/6, i.e. r ≡ `/L is 1/6 here. Further, dividing x, y, p, u, τ
by `m with m equal to 1, 1/3, 2/3, 1/3, 0 respectively, and multiplying c+, c−, f
and scaled angles by `n with n equal to 1/3, 1/3, 1/3, 2/3 in turn, shows that
the factor ` may be normalized to 1. So the results are given without loss of
generality for blade lengths ` of unity and the spatial period L equal to 6, with
a variety of other conditions. For clear record, the values of (c+, c−, ys) in fig-
ures 3–9 are (2, 2, 0.2), (2, 2, 0.25), (4.5, 2.5, 0.25), (4.55, 2.55, 0.125), (3.55, 1.55, 0.125),
(3.325, 1.325, 0.25), (0, 0.1, 0.25), respectively, and the corresponding values found
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Figure 4. (a) Pressures and (b) flow streamlines over two spatial periods. Here f± ≡ −αx,
α = 0.292.

for (π+, π ) are (−0.60, 0.57), (−0.69, 0.65), (−0.77, 0.73), (−0.34, 0.33), (−0.24, 0.23),
(−0.42, 0.38), (−0.34, 0.29), to two decimal places.

Figure 3(a, b) is for the case of the flat-plate blade at scaled incidence α, with
equal constants c± imposed as 2.0 (and ys set at 0.2), while the calculated pressure
constants π± at the leading edge are −0.60, 0.57 respectively. The pressures on the
blade and in the wake and the scaled skin frictions τ± ≡ ±∂u/∂y at y = f± on the
blade are shown. The blade flows are attached with forward motion. The pressure
gradient is more favourable overall on the lower surface than on the upper, this being
linked with the leading-edge pressure jumps, and so the positive τ− surface shear
values slightly exceed the positive τ+ values over the last 70% of the blade chord.
The pressure difference also produces lift. The wake effect from the blade continues
downstream to influence the next blade flow. Figure 4(a, b) likewise has flat plates at
incidence, with the shift value ys at 0.25, but pressures and streamlines are presented
over two spatial periods in order to bring out the leading-edge jumps more explicitly.
The effects found are broadly similar to those for the case of figure 3. The pressures
and streamlines in figure 5(a, b) are for almost the same incidence and ys is again set
at 0.25 but now c± are unequal and the results further show the streamlines from
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Figure 5. (a) Pressures and (b) streamlines for the case f± ≡ −αx, at incidence α = 0.299;
the streamline from the blade (0, 1) misses the next blade (6,7).

one blade (x between 0 and 1) clearly missing the leading edge of the next blade (x
between 6 and 7). The influence on blade pressures as well as scaled surface shears
and local streamline displacements is more pronounced than before.

The effects of blade thickness are included in the next four figures. For the smallest
thickness, figure 6(a, b) has a ys value of 0.125 and it yields π± equal to −0.34, 0.33
in turn for constants c± of 4.55, 2.55 respectively. Here the pressure gradient on each
blade surface becomes adverse over the last 40% or so of the chord, the overall
pressure variation is enhanced and the streamline displacement is increased. Close-up
views of the streamlines as well as pressures are plotted in figure 7(a, b) for a thicker
shape. The pressure variation on the blade is enhanced even more now, leading to
stronger adverse pressure gradients near the trailing edge and more displacement of
the local streamlines. Figure 8(a, b) presents the pressures and streamlines for a still
thicker case which gives π± as −0.42, 0.38 for c± equal to 3.325, 1.325 respectively.
The trends in the scaled pressure and streamline displacement are accentuated from
those in the preceding figure. These last two cases, unlike the previous ones, induce
separated (reversed) flows as shown on at least one surface of each blade. See Smith
(1983) and Jones & Smith (2000). The thickest shape is in figure 9(a–c), for which π±
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Figure 6. (a) Pressures and (b) streamlines for blade shape f± = ±2f∗ sin2(πx/`)− αx
with f∗ = 0.3 and scaled incidence α = 0.210.

are −0.34, 0.29, c± are 0, 0.1 and the values of p± found at the trailing edge are both
just less than −2.60. This provokes the largest separation eddy(ies), as expected. On
each blade surface the scaled surface shear displays a positive minimum followed by a
positive maximum and then becomes negative as separation occurs before the trailing
edge, in line with the increased adverse pressure gradients. The local displacement
of the streamlines is also increased. In all cases the pressure gradient in the wake is
adverse but relatively mild.

The jumps across the leading edge are apparent throughout, along with the bound-
ary layer growth on each blade surface and the thin wake downstream. The above
solutions for pressure in particular compare favourably in qualitative terms with the
experimental and computational results in figure 8 of Conlisk (1997) for a lifting rotor
in hover mode. The lift and drag for the flat-plate cases of figures 3–5 are given in
figure 10 in scaled form, from integration of the surface pressure differences and the
skin friction sums along the blade. The scaled lift increases monotonically with the
scaled angle of incidence α as expected from the upper and lower surface pressures
in the earlier figures, while the scaled drag gradually decreases.
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Figure 7. (a) Pressures and (b) close-up streamlines for the blade shape with f∗ = 0.7 at incidence
(α = 0.386), producing separated flow.

5. Short-blade properties
For short blades, the length ` is rL with the ratio r being small, and the spatial

period L from one blade leading edge to the next is now taken for convenience to be
of order unity; we recall the generalization described in § 4.2, such that x in figures
3–10 can be replaced by x/` in effect. The orders of magnitude of the present scaled
pressure, velocities and coordinates need to be considered here for small r values.

There are then at least five subregions in the upper half of the non-symmetric flow
solution of (2.2) and (2.3) even without separation taking place, as suggested in the
symmetric case of Bowles & Smith, accompanied by corresponding subregions in the
lower half. Subregion I± is the viscous attached sublayer on the upper and lower
surfaces of the blade and its immediate viscous wake, with streamwise length scale of
order r in x, and on the same streamwise length scale there is an inviscid subregion
II± outside and a passive inviscid sublayer V± in between them. The other two major
subregions are of streamwise extent O(1), namely III±, which is the continuation of
subregion II±, and IV , which at its upstream end is fed partly by the expanding
wake that emerges downstream from sublayer I± and at its downstream end as x
approaches L forms the beginning of subregion V± at the start of the period (next
blade). The velocity profile of V± is in fact unaltered to leading order on the O(r)
streamwise scale and so that profile then constitutes part (the outer part) of the
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Figure 8. (a) Pressure and (b) close-up streamlines for blade shape f∗ = 0.8, at scaled incidence
α = 0.575, with separated flow.

starting profile for subregion IV itself. See figure 11 which provides a sketch of the
suggested flow structure and its subregions for small r values.

5.1. The main shorter length scale

In the present non-symmetric context, the subregion IV remains largely symmetric
as in Bowles & Smith and the principal non-symmetric effects are felt instead in
the short-scale subregions I±, II± with smaller non-symmetric alterations also in the
longer-scale subregions III±, V±.

The thickness of subregions II±, III± is O(r−1/3) in y, from an order-of-magnitude
argument, with a resultant velocity profile u = r−1/3U±0 (Y ) which is unknown but

independent of x, with y = r−1/3Y . The profile U±0 tends to λ± |Y | plus a constant at
large |Y | and is positive. The thinner sublayers IV , V± both have O(r1/6) thickness
and sublayer I± is still thinner, with

∣∣y − f±∣∣ of order r2/3. The characteristic blade

widths
∣∣f±∣∣ here are supposed to be of order r2/3 also and in consequence they appear

directly in the upper and lower sections of the viscous layer I± on the blade, these
sections being classical attached boundary layers driven forward by the uniform speed
u ∼ r−1/3σ just outside, where the constant σ is O(1) and positive, and then joining
into the thin displaced wake beyond the trailing edge. Here σ ≡ U±0 (0) is taken to be
continuous across Y = 0.
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Figure 11. Flow regions induced when the blade lengths are short relative to the streamwise
period; see § 5.

The characteristic variation in the scaled pressure p is of order r1/3 over both of
the O(r), O(1) streamwise length scales, because of the relative thicknesses of I, II and
the spatial periodicity; and within the former scale the inviscid balances in subregion
II± coupled with (2.3c) and matching at small |Y | imply that

p ∼ r1/3

[−δ(X)∓ f1,2(X)

J1,2

+ π1,2

]
, (5.1a, b)

with the subscripts 1,2 now signifying values in the upper and lower halves respectively.
Here δ is the scaled Blasius- and Goldstein-wake thickness, giving δ as 1.7208σ−1/2X1/2
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on the blade and δ(∞) = 0.66412σ−1/2; also f1,2 ≡ f±/r2/3 is the scaled blade shape,
impressed from sublayer I , with x = rX, while the constants π1,2 are the unknown
scaled pressure values at the leading edge. The other constants are the integrated
quantities

J1 ≡
∫ ∞

0

(U0(Y ))−2 dY , J2 ≡
∫ 0

−∞
(U0(Y ))−2 dY , (5.1c, d)

which are positive. In the thin wake section however, beyond the trailing edge,
effectively f1 = f2 is to be found from the equi-pressure condition p+ = p−, giving

fwake ∼ r2/3

[
(J1 − J2)δ(X) + J1J2(π1 − π2)

(J1 + J2)

]
, (5.2a)

pwake ∼ r1/3

[−2δ(X) + (π1J1 + π2J2)

(J1 + J2)

]
, (5.2b)

from (5.1a, b). Also, to make the argument explicit, the leading-edge jump is taken as
in (4.1), which requires the shift ys to be small, of order r2/3 at most, say ys = r2/3ȳs,
and gives the leading-edge pressure values as

π1,2 = r−1/3p(0−)∓ λ±σȳs (5.3)

to leading order, in terms of ȳs. On the other hand the trailing-edge constraint that
p± (from (5.1a, b)) must be continuous with (5.2b) at X = 1 imposes the relation

π1 − π2 = {(J2 − J1)δ(1) + (J1 + J2)f1(1)} /(J1J2), (5.4)

since f1 = f2 at X = 1; the same relation follows from requiring f1,2 to be continuous
with f in (5.2a) at the trailing edge.

Hence the scaled shift ȳs is determined, from (5.3) and (5.4), as the right-hand side
of (5.4) divided by the negative quantity −(λ+ + λ−)σ. If, for example, the magnitude
of the blade deflection f1(1) is much greater than the viscous thickness δ(1) at the
trailing edge then the sign of ȳs is opposite to that of f1(1), meaning that a positive
(negative) angle of blade incidence causes an upward (downward) displacement of
flow just in front of the leading edge and a positive (negative) lift, which makes good
physical sense.

With the integral properties J1, J2 assumed known it is interesting that the pressure
distributions on the blade and in its immediate wake are determined to within an
additive constant (p(0−)) by the local response of subregions I, II, in (5.1)–(5.4),
while the wake shape is determined fully, in (5.2a) with (5.4). On the other hand the
pressure change over the O(r) length scale from just ahead of the blade leading edge
to the downstream end (far wake) of sublayer I is given by (5.2b) evaluated at X = ∞
(where δ(∞) is the Goldstein far-wake value), minus p(0−), yielding the explicit result

r1/3

[−2δ(∞) + J2(π2 − π1)

(J1 + J2)
+ λ+σȳs

]
(5.5)

for this pressure change. Similarly the wake centreline position at the downstream
end of sublayer I is given explicitly by (5.2a), again with X = ∞, where π1 − π2 is
given in (5.4).

5.2. The longer streamwise length scale

The pressure change (5.5) has to be counter-balanced by an equal but opposite
pressure change over the O(1) streamwise length scale in order to satisfy the spatial
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Figure 12. Scaled surface pressures and body and wake shapes, from the short-blade analysis, for
unit values of σ, α̂(= α/r2/3), λ±, with Jr−1/3p(0−) set at −0.5 and a blade which is an inclined flat
plate. Here the case J1 = J2 = J is taken. The three vertical bars indicate the range of pressure
values obtained directly from figures 3–5 for π± at the leading edge and p at the trailing edge, for
comparison.

L-periodicity condition. This is achieved through the flow responses in subregions
III, IV , the former being similar to II except for an extra viscous contribution, so
that

p ∼ r1/3
[
(K1,2 + b)x/J1,2

]
+ constant (5.6a, b)

on the O(1) length scale, where K1,2 denotes the integrals of U ′′0/U2
0 with respect to

Y from 0 to ∞,−∞ to 0 respectively and the positive constant b stems from the
influx into the wake IV as in Bowles & Smith. Equating (5.6a) and (5.6b) imposes
a constraint on the profile U0 including the c± factors but more significantly the
constant pressure gradient of (5.6) yields a pressure change of r1/3(K1 + b)L/J1 over
this length scale. Hence we obtain, for periodicity of the pressure, the relation

(K1 + b)
L

J1

=
2δ(∞)

(J1 + J2)
+

{
J2

(J1 + J2)
+

λ+

(λ+ + λ−)

}
{(

1

J1

− 1

J2

)
δ(1) +

(
1

J1

+
1

J2

)
f1(1)

}
(5.7)

linking together the long- and short-scale properties. The above assumes that, for the
present O(r2/3) blade shape non-symmetries, the wake centreline is displaced in y by
an amount less than O(r1/6) (cf. (5.2a)), since otherwise the centreline shape would
have to be linear in x for consistency with (5.6) and then (5.3) would need altering,
specifically through its σ factor, and an unbounded stack of viscous wakes would be
present in each spatial period. The relation (5.7) agrees with Bowles & Smith’s for
symmetric flows.
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5.3. An example

An example of the pressure distributions and resulting wake shape from the short-
blade theory is plotted in figure 12, which takes the values J1, J2 to be equal, say to J ,
and unit values for σ, λ± and the scaled angle of incidence, with a flat-plate geometry.
The pressure prediction shown in particular indicates fair agreement with the full
results of § 4 for quite moderate r values, specifically with all the pressure curves in
figures 3–5 where r is 1/6. Along with that, all the scaled skin friction or streamline
displacement results in those figures are close to the Blasius forms predicted by the
small-r analysis. This measure of agreement emerges despite the lack of knowledge of
the O(1) constants J1, J2, and so on, and suggests that the small-r theory may work
well at even larger values of r than 1/6.

There is also agreement with the experiments and direct computations shown in
Conlisk (1997, figure 8) whose form resembles quite closely that in our figure 12 and
even shows signs of an underlying pressure jump at the blade leading edge. This is
despite the different viscous thicknesses inherent in the present theory and in the
above experiments or direct computations.

The drag remains essentially of the aligned flat-plate type in this regime. The
scaled lift on the other hand is fixed to leading order by the short-scale response in
(5.1a, b)ff. alone, as the lift relies on p2 − p1 and hence on π2 − π1 from (5.1a, b) (and
on other quantities which are known), a pressure difference which is determined by
the trailing-edge condition (5.4). For the example of flat-plate blades in figure 12,
with equal J1, J2 and with f1,2 equal to −α̂X where α̂ ≡ α/r2/3 is of order unity, we
obtain the linear dependence

Lift ∼ (α/J1

)
r2/3 (5.8)

of the lift on incidence α. This is in keeping with the computed behaviour of the lift
for the r value 1/6 presented in figure 10.

6. Further comments
6.1. Immediate points

We draw out three points immediately from the non-symmetric multi-blade flow
study. First, the condensed periodic boundary layer and wake of § 2, covering a
wide parameter range, are as seen already in Bowles & Smith’s (2000) symmetric
flow theory except for the streamwise jumps across the leading edge(s), described in
detail in § 3. These jumps are necessary to enable the condition of equal upper and
lower surface pressures to be satisfied at the trailing edge of the blade. The jump
mechanism involved, which appears to be new, balances the large shear-based inertial
force against the large pressure gradient locally, inducing a jump in mass flux that is
closely connected to the jump in pressure (and on a larger scale to the normal flow
through the system). The mechanism here is different from that found at effective
leading edges in branching flows and in vehicle–ground interference, because here
normal interplay of pressure between two or more solid surfaces is absent.

Second, the short-blade analysis of § 5 seems to capture the main physics of the
numerical results at moderate chord/period ratios (§ 4), at least for attached motions
with moderate lift. One-sided or non-symmetric separations resembling those in Smith
(1983) and Jones & Smith (2000) tend to occur at higher lift or blade-thickness values
in the results of § 4 and can be incorporated in the short-blade theory as they are in
Bowles & Smith for non-lifting cases. In addition, the short-blade theory adds explicit
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support to the basic need for the leading-edge jump arising in virtually all lifting
cases.

Third, the flow structure for blade–wake interaction with leading-edge jumps present
extends to other contexts. It holds for example in the alternative setting of one isolated
blade immersed non-symmetrically in the shear flow of a relatively thick wake
generated upstream of the blade. Here the upper and lower pressures generated in the
wake of the isolated blade must not only be equal but also tend far downstream to
the undisturbed incident value, analogous with the conditions required in the current
periodic flow setting. Applications that spring to mind are to successive blade row
interactions in turbines, to trailing-edge flaps and to sheltering wake flight.

It is also interesting to consider briefly how the flow solution depends on the non-
dimensional blade chord length ` and streamwise period L, especially in the context
of the applications described in the introduction. Suppose ` is fixed, within the range
of (2.1). Then if L is of order `, results qualitatively similar to those in § 4 and figures
3–10 apply. If L is much larger than `, however, the ratio r is small, the blade is
relatively short and so § 5 applies. As L continues to increase § 5 continues to apply
despite the thickening of the outer subregions until in effect the right-hand restriction
in (2.1) is approached, for example through the definition of the characteristic length
`D in § 2. When that restriction is actually reached the only change to the theory in § 5
is that a pressure–displacement linkage comes into play on the longer scale of § 5.2,
as in Bowles & Smith (2000) for the symmetric case. If L is reduced, by contrast,
there is an intriguing limit case with the wake length L− ` becoming comparatively
small, as discussed by Smith & Timoshin (1996a, b). Next suppose L is fixed and ` is
varied instead. The maximum ` value corresponds to the case of small wake length
just mentioned, while ` being of order L is the subject of §§ 2–4. Further reducing
`, however, makes the ratio r small and hence brings in § 5 again. This continues to
apply until, and possibly beyond, the stage where the characteristic streamline slopes
of order δ1r

−4/3 in the outer subregions become of order unity, yielding a critical
ratio r of order (Re−1δ)1/4 at which those subregions come under the control of the
linearized or nonlinear Euler equations, depending on blade thickness. That critical
ratio is small in view of the definition (2.1) for the range of current flows.

6.2. Further studies and issues

Some inkling of likely further studies of interest has been given already. Others are
these. The special longer scale associated with the right-hand restriction of (2.1) can be
addressed as in our previous study, bringing in direct pressure–displacement linkage
either through the fully computational flow solution or on the longer length scale
alone in the short-blade context as described above. Similarly, relatively thicker blades
tend to bring into play the incident velocity profile of the whole boundary layer/wake
rather than just the inner portion of uniform shear. Three-dimensional flows would
undoubtedly be of interest, although computations with a trailing edge present are
difficult. The short-blade theory may be more fruitful, starting with spanwise effects
acting on the longer length scale. Unsteadiness likewise draws attention to the long
scale first, for global features, but with the transition study of Smith et al. (2000)
also being relevant in the near wakes and, along with other wake transition studies,
reminding us of the turbulent wakes that occur in practice in some contexts.

Slightly different questions are raised by non-zero incidence of the entire multi-
blade system, rather than of individual blades relative to the system itself as in §§ 4
and 5. Suppose that the system incidence angle β is small. Now the development
length characteristic of the O(δ`D) thick surrounding viscous motion in § 2 is of



Lifting multi-blade flows with interaction 225

order γ`D say, where γ is large and given by Re−1/2γ1/2 = δ. So the system incidence
provides a vertical shift in yD of order βγ`D at the typical blade downstream, whereas
the viscous sublayer thickness in yD is δ1`D where δ1 is (Re−1δ)1/3 from § 2. The
two yD estimates are thus comparable, inducing a first nonlinear effect of the system
incidence, if βγ = δ1; that is, β = O(Re−4/3δ−5/3) determines the critical angle. Here
Re lies in the range (2.1). Hence β must lie between the orders Re−1 and Re−3, or,
which is equivalent, β must be much less than both δ5 and δ−3. For instance if δ is
about 1

5
then the critical β is approximately 8× 10−5, while if δ is about 5 the critical

value is approximately 2 × 10−3. These critical values of the angle β are remarkably
tiny. Moreover, on the local length scale of a blade and its wake the system incidence
makes itself felt predominantly through the above vertical shift alone, not through
a local incidence factor, since the typical local flow angle is of order δ1 which is
much larger than the system incidence angle β. The flow structure of §§ 2 and 3
therefore still holds here except that the no-slip constraint (2.3a) now applies with
a constant β̄ added to f±(x), where β̄ is the scaled angle of incidence of the entire
system. The simple effective shift in the vertical coordinate locally again introduces
non-symmetry into the periodic single blade-wake motion, representing the incidence
of the multi-system.

Thanks are due to Susan Brown, Robert Bowles, Alan Jones and Sergei Timoshin
for discussions and comment, to the referees for comments, to EPSRC and DERA
Farnborough for support, and to the late Sir James Lighthill for a probing question
on the flow structure.
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